
On the mechanism and kinetics of the transport processes
in systems with intensive interphase mass transfer. 2.

Stability

Chr. Boyadjiev

Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G.Bontchev Str., Bl.103, 1113 So®a, Bulgaria

Received 5 August 1999

Abstract

This research suggests a linear analysis of the stability of non-stationary absorption of concentrated gases in an
immobile liquid, where a basic ¯ow is induced as a result of a natural convection and a non-linear mass transfer. A
specter of disturbances that lead to a stable dissipative structure with a high mass transfer coe�cient has been
found. The disturbance amplitude is determined by experimental data for the mass transfer rate in absorption of

pure CO2 in a stagnant water column. It has been shown that conditions for the occurrence of the Marangoni e�ect
do not exist. The theoretical results have a good agreement with the experimental data. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In the ®rst part of this research, it was shown [1]
that in cases of absorption of pure gases in a
cylindrical liquid column, a secondary ¯ow is

induced as a result of a natural convection and a
non-linear mass transfer. Under these conditions,
the Marangoni e�ect is negligible and for the vel-

ocity, temperature and concentration the following
expressions were obtained:
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These results di�er signi®cantly from the Benard
problem [2,3], where under certain conditions a

mechanical equilibrium �vz � vr � vj � 0� is possible.
The reason for this di�erence is the non-linear mass
transfer, i.e. the large mass ¯ux induces a secondary
¯ow on the phase boundary:
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and in this way, violates the necessary condition for

a mechanical equilibrium [4±6].

The process, described by the expressions (1), as

may be expected, analogous to the Benard problem, is

unstable regarding small disturbances, which makes

possible the usage of the linear analysis.

2. Linear stability analysis

A process, represented as a superposition of the

basic process (1) and small disturbances in the velocity

�v 0z, v 0r, v 0j�, pressure �p 0), concentration �c 0� and tem-

perature �y 0� will be considered:

vz � v 0z, vr � v 0r, vj � v 0j, p� p 0, c� c 0,

y� y 0:
�3�

This new process should satisfy (as well as the basic

one) the Oberbeck±Boussinesq equations [1]. The

introduction of Eqs. (1) and (3) in these equations

leads to a system of equations concerning v 0z, v
0
r, v
0
j, p

0,
c 0 and y 0, that will be analyzed in a linearized form

with regard to these small disturbances:
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Nomenclature

c concentration
c� equilibrium concentration
D di�usivity

g earth gravity
i mass ¯ow
J absorption rate

k mass transfer coe�cient
l depth of velocity change
p pressure

q thermal e�ect of the chemical reaction
Q quantity of the absorbed substance
r radial coordinate
r0 radius of the liquid column

t time coordinate
t0 time for process performance
vz axial velocity component

vr radial velocity component
vj angle velocity component
z axial coordinate

Sh Sherwood number

Greek symbols

b coe�cient of thermal expansion
y temperature
y0 initial temperature

l heat conductivity
m viscosity
p =3.14
r density

r0 solvent density
s surface tension
j angle coordinate
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Eqs. (7) and (8) are obtained from the equation of
continuity [1], using the condition b << 1: The bound-
ary conditions for the pressure are not used, because

they will be eliminated in Eqs. (4) and (5). The bound-
ary conditions regarding coordinate j are not
included, because they will be discussed in disturb-

ances, periodical regarding j:
The system of equations (4)±(15) has partial sol-

utions (``normal'' disturbances), that depend exponen-

tially on time:

v 0z � �vz�t, z, r, j� exp�ÿ ot�,

p 0 � �p�t, z, r, j� exp�ÿ ot�,

v 0r � �vr�t, z, r, j� exp�ÿ ot�,

c 0 � �c�t, z, r, j� exp�ÿ ot�,

v 0j � �vj�t, z, r, j� exp�ÿ ot�,

y 0 � �y�t, z, r, j� exp�ÿ ot�,
�16�

where the pre-exponentials also depend on time,
because the basic process (1) is non-stationary. The

disturbances, presented in this way, decrease or
increase with time, depending on the value of o, and
for

o � 0 �17�

the disturbances are ``neutral'', i.e. a process that do
not attenuate and do not intensify with time. The
mathematical description of this process is obtained

from Eqs. (4)±(15) after the introduction of Eqs. (16)
and (17):
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The problem (Eqs. (18)±(27)) obviously has partial sol-
utions, for which the velocity, concentration and tem-

perature depend on j harmonically, i.e. in Eqs. (18)±
(27), the following specter of neutral disturbances may
be introduced:
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Introducing Eq. (28) into Eqs. (18)±(27) leads to the
following eigenvalues problem:
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In Eqs. (29)±(35), c � c� is accepted, because the thick-
ness of the layer, in which the velocity changes, is
much less than the one for the concentration.

The pressure in Eq. (29) may be eliminated, if Eq.
(30) is integrated with respect to r and then di�eren-
tiated with respect to z:
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Introducing Eqs. (40), (32) and (33) into Eqs. (29), (34)

and (35) leads to the ®nal form of the equations for
determination of the ``neutral'' disturbances in velocity,
concentration and temperature:
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3. Analytical solution

The problem (Eqs. (41)±(44)) will be solved by the

introduction of dimensionless variables and a partial
separation of the variables:
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where the dependence of the disturbances on the coor-
dinates is supposed to be analogous to the basic pro-

cess (1) for small values of z.
The introduction of Eq. (45) into Eqs. (41)±(44)
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R � 1, f 0n � 0; n � 0, 1, 2, . . . ,1, �51�
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The solution of the Oiler equation (47) is obtained
through Grin functions [7], looking for the eigenvalues

and eigenfunctions for n � 0, 1, 2, . . ., 1:
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where x is a parameter that cannot be determined in

the approximations of the linear theory.
Keeping in mind the order of the dimensionless vari-

ables in Eq. (52), from Eqs. (46) and (48), the follow-
ing is directly obtained:
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4. Results and discussion

The obtained solutions (53)±(55) allow de®ning the
®nal expressions for velocity, concentration and tem-

perature:
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From Eq. (57), it is possible to determine the local (at
a given moment) mass ¯ow:
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The amount of absorbed substance through the cross-
section pr2 is determined directly from Eq. (59), inte-
grating with respect to j in the range �0, 2p�, and keep-
ing in mind that the integrals of the harmonic

functions are equal to zero:
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From Eq. (60), the absorption rate (J ), the Sherwood
number (Sh ) and the mass of the absorbed substance

(Q ) for a period of time t0 through a unity surface are
directly obtained:

J � kc� � 1

pr20t0

�t0
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where k is the mass transfer coe�cient of the non-
stationary absorption.
In this way, the obtained Eqs. (61)±(63) allow the

determination of the absorption rate with an accuracy
de®ned by the parameter g, whose value cannot be
determined in the approximations of the linear stability
analysis. The parameter g may be determined by intro-

ducting of an additional physical condition, or from
the experimental data.
The study of non-stationary absorption of pure CO2

in H2O [8,9] o�ers experimental data for the depen-
dence of Q on

����
t0
p

: They were used for the determi-
nation of g in Eq. (63) by means of the least square

method. The value of g was calculated g � 4:04: In
Fig. 1, Eq. (63) for g � 4:04 is shown, and the dots are
experimental data from Refs. [8,9].

From Eqs. (62) and (63), it is clear that the increas-
ing of the absorption rate is a result of the stability
loss of the main process (1). As a result, the small dis-
turbances may increase until reaching a new stable

periodical process, i.e. they are a self-organizing dissi-
pative structure (Eqs. (56)±(58)). This means that the

disturbances in Eqs. (4)±(10) are not very small, and
therefore, the linear analysis of stability may not be
correct, i.e. the obtained results (56)±(58).

The correctness of the used linear analysis of stab-
ility of the process (1) may be determined, if a check
of the satisfaction of its approximations is carried out.

For example, the used Eq. (4) is valid in the cases
when:

v 0z
@v 0z
@z
� vz

@vz
@z

, v 0r
@v 0z
@ r
� vr

@vz
@r

,

v 0j
@vz
@j
� vj

@vz
@j

:

�64�

The obtained results for the disturbances (Eqs. (45)

and (52)±(55)) show

v 0z
@v 0z
@z
� v 0r

@v 0z
@r
� v 0j

@v 0z
@j
� 0: �65�

Analogously, the correctness of the elimination of the
remaining square terms in Eqs. (5)±(10) may be
shown. The terms:

v 0z
@c 0

@z
, v 0z

@y 0

@z
�66�

Fig. 1. Comparison between theoretical (Eq. (63)) and experimental (points) results.
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are exceptions in Eqs. (9) and (10), but they will also
appear in Eqs. (7) and (8) and will be eliminated in the

next transformations in obtaining Eqs. (42) and (43).
The analysis of Eqs. (64)±(66) shows that the

obtained results (56)±(63) are correct and valid not

only for very small disturbances, but also they satisfy
the non-linear form of the system of equations (4)±
(15).

In Ref. [8], an attempt is made to explain the di�er-
ence in the experimental data for a non-stationary
absorption of pure CO2 in H2O in the linear theory of

mass transfer and the Marangoni e�ect. There, it is
correctly shown that �y� ÿ y0�10:028C �y� Ð tempera-
ture of the phase boundary), but it is assumed un-
reasonably that the ¯uctuations of y� are enough for

the stability loss as a result of a surface tension gradi-
ent. The usage of the experimental data for the deter-
mination of the characteristic velocity of the ¯ow

u0 � 1:12� 10ÿ6 m/s shows that it is very close to the
characteristic velocity in the cases when it is a result of
the non-linear mass transfer [1]:

u0 � c�

r0

�����
D

t0

r
� 0:876� 10ÿ6 m=s, t0 � 10 s: �67�

The solution of the Benard problem, taking into
account the surface tension gradient [5,10±12], show

that the Marangoni e�ect may occur in layers with
thickness not greater than several millimeters. This fact
additionally shows that in the case of a non-stationary
absorption at large concentration gradients, occurrence

of the Marangoni e�ect cannot be expected.

5. Conclusions

The theoretical analysis of the mechanism and the
kinetics of the transport processes in systems with

intensive mass transfer shows that in the cases of a gas
absorption at large concentration gradients and a
chemical reaction in the liquid phase, the mass transfer
rate is signi®cantly higher than the one supposed by

the linear theory of mass transfer. In the absence of
surface active agents and availability of a temperature
®eld, caused by the thermal e�ect of the chemical reac-

tion, the surface tension gradient is not enough for the
occurrence of the Marangoni e�ect. In the case of a
non-stationary absorption of a gas in a stagnant liquid,

a ¯ow is induced as a result of a natural convection
and a non-linear mass transfer (a density gradient in
the volume and a large mass ¯ux through the phase

boundary). This problem di�ers signi®cantly from the
Benard problem, as the large concentration gradient at

the interphase induces a secondary ¯ow, oriented nor-
mally to this surface, and in this way do not allow the
existence of a mechanical equilibrium (di�usion in an

immobile liquid). In this way, the discussed basic pro-
cess (movement, di�usion and heat transfer) is unstable
regarding disturbances, that may not be small. As a

result, the process becomes unstable and is trans-
formed into a periodically stable process, i.e. a self-
organizing dissipative structure (velocity, concentration

and temperature ®eld), in which the mass transfer rate
is signi®cantly higher. The obtained theoretical results
are in a good agreement with the experimental data.
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